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Abstract

In this paper we present Sprinx, an interactive graphics
based software package for designing spherical 4R mecha-
nisms. The program provides a platform for the synthesis
of a mechanism that guides a body through four orien-
tations in space. The designer is also given the ability
to perform static and dynamic analyses of the resulting
mechanism.

The purpose of this work is to assemble the current
spherical 4R synthesis theory into a software package that
is useful for spatial mechanism design.

1 Introduction )

In spherical mechanisms, see Fig. 1, “any point in a moving body
is confined to move within a spherical surface, and all spherical
surfaces of motion are concentric”, (Chiang, 1988). Therefore,
each link of a spherical mechanisms has at most three rotational
degrees of freedom. A spherical mechanism is the simplest mech-
anism that provides spatial movement.

Fach link of a general spatial mechanism can possess up to
six degrees of freedom; three rotational and three translational.
Therefore, the design of spherical mechanisms is simpler than
general spatial mechanisms and parallels the traditional tech-
niques of planar mechanism synthesis.

The synthesis of planar mechanisms is inherently a two di-
mensional problem. Therefore, the design techniques are well
suited to a drafting table, blackboard, etc. This is not true of spa-
tial and spherical mechanisms. The inherent spatial characteris-
tics of these mechanisms makes such two dimensional graphical
constructions difficult. For these mechanisms it is useful for the
designer to be able to visualize the entire problem in its three di-
mensions. Modern computer workstations provide the high speed
graphics capabilities which make possible real-time visualization
of spatial mechanisms. Semmx uses the three dimensional graph-
ics capabilities of an IRIS 4D-85 GT to provide the interactive
environment needed to design spherical 4R mechanisms.

2 Overview

Seumx is a computer graphics based interactive program for de-
signing spherical mechanisms formed by a closed chain consisting
of four revolute joints; the so called 4R mechanism. The result
of the design is a one degree of freedom mechanism which guides
a body through four finitely separated orientations in space.
The theory for the design of spherical mechanisms for four po-
sition rigid body guidance is analogous to that for planar mech-
anisms, see Duffy, 1980. In the planar case the designer specifies
four positions in the plane and computes the set of points in the
moving body which have four positions on a circle, see Sandor
and Erdman, 1984. These points are the moving pivots of the
planar 4R mechanism, and they form a cubic curve called the
circle point curve. The points that are the centers of these cir-
cles are the fixed pivots of the linkage they form a cubic curve
called the center point curve. See Bottema and Roth, 1979, and
Suh and Raddliffe, 1978, for a further discussion of these curves.
In the case of spherical four position synthesis the designer
specifies four orientations which are displayed as positions on the
surface of a sphere. Let an axis in the moving body be defined as
a line through the center of the sphere and a point in the body.
The set of axes in the moving body which have four positions
on a right circular cone are the moving axes of the spherical 42
mechanism and they form a cubic cone called the circle axis cone.
The axes that are the central axes of these cones are the fixed
axes and they form a cubic cone called the center axis cone.
The major difference between planar and spherical finite po-
sition, synthesis is the essential three dimensionality of spherical
mechanisms. While synthesis curves for planar mechanisms may

‘be sketched or plotted in two dimensions, the synthesis cones for

spherical mechanisms, and the mechanisms themselves, must be
viewed in their full three dimensional form. The designer requires
the ability to manipulate the synthesis cones and view them in
an arbitrary orientation in order to gain an understanding of the
available choices of fixed and moving axes. Furthermore, once
the linkage has been specified the evaluation of its motion also




Figure 1: A Spherical 1R Mechanism

requires the ability to view the linkage in a three dimensional en-
vironment. The designer often must adjust the radii of the links
and their form in order to avoid interference. Moreover, a static
and dynamic analysis of the mechanisms assists in evaluating the
functionality of a design. Sernx provides all of these capabilities.

3 Structure

Seunx is structured in such a manner as to provide an interactive
platform from which the designer creates linkages in order to
satisfy given design specifications. The program is organized such
that each phase of the design process is carried out in a separate
graphics window. Each window has a title bar which denotes the
name of the window. Corresponding to each window is a button
listed on the left hand side of the screen labeled with the name of
the window. To select a window to work in use the mouse to push
the appropriate button at the left hand side of the screen. The
menu associated with that graphics window is then displayed on
the right hand side of the screen.

4 Design Cone Generation

The design cones for four position synthesis of spherical 4R closed
chain mechanisms are called the center axis and circle axis cones.
They are used in the same way as the planar linkage design
curves; the center point and circle point curves. For four pre-
cision position spherical synthesis the center axis cone is the set
of axes that will serve as fixed axes and the circle axis cone is
the set of corresponding moving axes. The procedure we use
to generate these cones is located in Bodduluri et al (1991). A
summary of that process follows.

In general, the quaternions that define the positions of the
coupler of a 4R spherical closed chain form a curve in four di-
mensional space called the image curve of the linkage, see Ge
and McCarthy, 1988. An opposite screw quadrilateral associated
with four precision positions is treated as a linkage, often referred
to as the compatibility linkage, and its image curve is computed.
The center axis and circle axis cones are obtained as a projection
of this curve.
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The image curve of a spherical 4R linkage is the set of unit
quaternions, or Euler parameters, that define the position of the
coupler link relative to the base link of the compatibility link-
age. The components of a quaternion are obtained from the unit
vector s = (sg, 5y, s:) defining the axis of spatial rotation and @
the angle of rotation about that axis. The quaternion associated
with this displacement is given by (Hamilton 1969):
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The image curve of the coupler of a spherical linkage is found
by attaching reference frames G and H to the base and coupler
of the linkage. The position of H relative to G is defined by spec-
ifying any relative angle between links. By defining the driving
crank angle as the degree of freedom specified to locate the en-
tire position of the linkage, the position of the coupler becomes
parameterized by this angle. The image curve is simply this
relationship expressed in quaternions. Through 2 linear trans-
formation and a projection operation the rotation curve of the
opposite screw quadrilateral is determined. The rotation curve of
the opposite screw quadrilateral (with a reference position spec-
ified by the initial configuration of the linkage) is the center axis
cone.

The method for generating the center axis cone for four po-
sitions can be used to generate the circle axis cone by inverting
the relationship between the four precision positions and the fixed
frame. This is done by holding a precision position fixed and con-
sidering the positions of the fixed frame relative to the precision
position as it moves through the four positions. The center axis
cone of the corresponding (inverted) opposite pole quadrilateral
is the desired circle axis cone. These cones outline all possible
linkages that pass through the desired four positions.

There is a one-to-one correspondence between axes on the
center axis cone and axes on the circle axis cone. Therefore,
choosing one axis on either of the design cones specifies an entire
crank. Picking two pairs of axes specifies both cranks and the 4R
closed chain is completely specified. The two axes on the center




axis cone are connected to establish the fixed link. The two axes
on the circle axis cone are joined to establish the coupler.

In Seumnx, after the four precision positions are specified and
the cones created, the selection of the cranks of the mechanism is
accomplished in the cones window. By choosing the appropriate
button, both the driven crank and the driving crank are selected
from the cones. Recall that it is necessary to choose both cranks
to completely specify a linkage. After both cranks have been
chosen the analyze button is used to create the corresponding
linkage, which is then displayed in the linkage window.

5 Statics Module

Experience with the construction of spherical mechanisms shows
that mechanisms often jam due to link deformation under inter-
nal loading. Designing links which can support these internal
forces is central to synthesizing functional spherical mechanisms.
The statics module of Semvx performs a complete static loading
analysis of spherical 4R mechanisms.

5.1 Equilibrium Equations

In this section we present the static equations of equilibrium for
a rigid link 7 connecting two revolute joints in a spherical closed
chain. The complete derivation and presentation of the static
analysis algorithm used in Sprvx can be found in Larochelle and
McCarthy, 1992. First, the general spatial force and moment
balance equations are shown. Finally, the constraint equations
associated with the requirement of spherical chains that the joint
axes intersect at a point are presented.

In our formulation all of the link forces are measured in the
fixed reference frame, see Fig. 2. Therefore, the force balance
equation for link i is simply,

~ O 4+ iy = 0. (2)

The superseript 0 indicates that the vector is measured in the
fixed frame and the subscript i denotes that the force is applied
by the (i — 1)t* link to the i** link.

The three moment balance equations for a general link are,

m; = [MLs]T{ :,ﬁ::’ } (3)
where,
17 [0,
[Mps] = [ [};lll"i+E]¥;] ] . 4)

[MLs], the link moment matrix, is 2 6 X 3 matrix derived from
the geometry of the link. Y
Tor a spherical link i the constraint equations are as follows.
Due to the statically indeterminate geometry of the joints no
force transmission is allowed from link ¢ — 1 to link 7 along the
itk joint axis,
of; . 0z; = 0. (8)

Furthermore, if there is no externally applied torque on the ith
joint axis,
m; - %23 =0. (6)

Eq. 3 and Eq. 2 are the 6 equations of static equilibrium
for a spherical link. These six equations written for each link
of a spherical mechanism, coupled with the constraint equations,
Eq. 5 and Eq. 6, form the system of linear equations to be solved.
These equations are written in the form [A]x = b, where; x
is the vector of unknown forces and moments, and {A] and b
are coefficients determined from the linear equations of static
equilibrium. This system of linear equations is solved for x in
Seunx by using the maximum pivot strategy.

5.2 Numerical Example

In this section we present an example of the static analysis per-
formed by Semnx.
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Figure 2: Free-Body Diagram of a Spherical Link

The link lengths of the mechanism analyzed are givein Thbl. 1.
This is a crank-rocker mechanism. The driving torque was equal
to 10.0 {Nm). The data generated by the statics module is plot-
ted such that the internal moments and the driven torque are
normalized with respect to the driving torque and are shown for
the range of admissible driving crank angles.

The driven torque peaks at a driving crank angle of 264 deg.
This is a singular configuration for the mechanism. The non-
normalized driven torque is plotted in Fig. 3. The internal mo-
ments applied to the coupler are, —mg;, which is the bending
moment, and —mgy, which we call the torsional moment. Re-
call that these moments are measured in the coupler’s reference
{rame, see Fig. 2. The non-normalized bending and torsional
moments are plotted in Fig. 4. Note that ma, (solid) has a min-
imum value that is 1.03 times the driving torque. In addition,
mg, (dotted) is zero.

6 Dynamics Module

The dynamics equations are necessary for the satisfactory design
of spherical mechanisms, which may satisfy kinematic specifica-
tions, but still be dynamically unsound. For instance, a linkage
designed through position synthesis may reach all desired posi-
tions but require large torques to go through regions that are near
a singularity. The complete derivation of the dynamic analysis
of spherical 4R linkages can be found in Dooley and McCarthy
(1992).

QOur derivation uses six generalized coordinates: the driving
and driven crank angles (see Fig. 1) and the Euler parameters
of the coupler. The equations of motion for each moving link
and the constraint equations between the bodies are presented.
These equations are combined to fully prescribe the motion of
the 4R closed chain. They are integrated using the IMSL routine,
DV ERK.

Fig. 1 is a typical spherical 4R mechanism. The lengths of
the links are measured in terms of the rotation between the two
revolute joint axes attached to the two ends of the link. Thus,
the length of the driving crank is considered to be a1, the length
of the driven crank is as, the length of the coupler is 7, and the
length of the fixed link (between the two base joints) is 7. The
distance from the fixed joint of the driving crank to its center of
mass is aj;. Similarly, the distance from the fixed joint of the
driven crank to its center of mass is cg;. The center of mass for
the coupler is taken to be midway between the two floating joints.
The masses of the links are m;, mo, and m. The inertia matrices
are [J1], [J3), and [J]. The radial distances to the centers of mass
are 7y, r9, and 7.

O
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Figure 3: Driven Torque versus Driving Crank Angle
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Figure 4: ma, and mg, versus Driving Crank Angle

The generalized coordinates used to write the equations of
motion are the driving and driven crank angles and the Euler
parameters defining the position of the coupler:

a={0 82 Q1 Q2 Qs Q}7.

This system has only one degree-of-freedom. Therefore, five con-
straints relate the equations of motion.

6.1 Equations of Motion

Equations of motion are written individually for the three moving
links of the system. The equations of motion for the driving and
driven cranks are the equations for a pendulum. The equations
are

(mir? sin® aqy + JL)0; + migrisin oy sin 8; = O, (7)

where i = 1 for the driving crank and i = 2 for the driven crank,
and where O, is the driving torque and ©; = 0. The equations
of motion for the coupler are derived in terms of quaternions.
This set of generalized coordinates requires five constraint
equations. One of them is the Euler parameter constraint,

QR+ +Q5+Qi~1=0.

Two constraints are found by noting that the driving and driven
cranks have constant length. The two remaining constraints are
found by recovering the driving and driven crank angles from the
quaternion coonrdinates.
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Assemble the individual equations of motion and the second
derivatives of the constraints in a system of eleven equations as

ERIHEE

where A is a 5-vector of LaGrange multipliers, h combines the
Coriolis, centripetal, gravitational and applied forces, [A{] is the
mass matrix, [I'] is the constraint jacobian, and ¢ is a 5-vector of
the product terms that result from the second derivative of the
constraints.

6.2 Numerical Example

As an example of the implementation of the dynamics module
we examine the forward and inverse dynamics of the mechanism
detailed in Tbl. 1. The forward dynamics are integrated for a

LINK T3 o o | mg I Jy J.

DRIVING | 1.1 103.0 51.5|1.97]1.80 0.0 0.90
DRIVEN 1.3 1143 57.1|1.83|1.56 0.78 0.78
COUPLER | 1.2 164 8.2 |1.17|1.15 0.57 0.57
FIXED 1.0 247 123

Table 1: Properties of the 4R Spherical Mechanism

constant driving torque of 5.0 (Nm). The results are shown in
Fig. 5 where the driving (solid) and driven (dotted) crank an-
gles are plotted as functions of time. The inverse dynamics are
calculated for a constant angular velocity of 5 (rad/sec). The re-
quired driving torque (solid) and the driven crank angle (dotted)
are plotted versus the driving crank angle in Fig. 6.

7 Conclusions

In this article we have presented Semnx, an interactive software
package for designing spherical 4R closed chains. Incorporated
into Seuvx are modules for performing a complete static load-
ing analysis and both forward and inverse dynamic analysis of
spherical 4R mechanisms.

It is our hope that this design and analysis tool will facilitate
the design and construction of spherical mechanisms to solve spa-
tial motion problems.
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Figure 5: Driving and Driven Crank Angles versus Time
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Figure 6: Driving Torque versus Driving Crank Angle
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Figure 7: SPHINX

Figure 8: SPHINX: Linkage



